2.1.23

Suppose \mathbf{x} is any solution to $A \mathbf{x}=\mathbf{0}$. Then $C A \mathbf{x}=I_{n} \mathbf{x}=\mathbf{x}$. However, $C \mathbf{0}=\mathbf{0}$ therefore $\mathbf{x}=\mathbf{0}$.

If A were to have more columns than rows, there would have to be at least one free variable in the row-reduced echelon form of A and hence there would be a non-trivial solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. As we have shown, A has no non-trivial solutions to the homogeneous equation and hence cannot have more columns than rows.

2.3.11

a) True. By Theorem 8(b,d).
b) True. By Theorem 8(e,h).
c) False. For a counterexample take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
d) True. By the contrapositive statement to Theorem $8(\mathrm{c}, \mathrm{d})$.
e) True. If A is invertible then so is A^{T} with $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

2.9.3

We need to solve the system of equations

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -2 & -3 \\
-4 & 7 & 7
\end{array}\right] } & \sim\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & -1 & -5
\end{array}\right] & \left(R_{2} \rightarrow R_{2}+4 R_{1}\right) \\
& \sim\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 5
\end{array}\right] & \left(R_{2} \rightarrow-R_{2}\right) \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 7 \\
0 & 1 & 5
\end{array}\right] & \left(R_{1} \rightarrow R_{1}+2 R_{2}\right)
\end{aligned}
$$

So

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
7 \\
5
\end{array}\right]
$$

